В Беркли создали "научный ИИ", работающий над новым поколением аккумуляторов

Исследователи из Национальной лаборатории им. Лоуренса в Беркли применили инновационный метод для изучения процессов деградации литиевых аккумуляторов с быстрой зарядкой. Учёные создали уникальный алгоритм машинного обучения на базе рентгеновских снимков химических процессов в батареях и добавили в модель данные из других исследований по этой теме. Созданный таким образом «научный ИИ» способен быстрее разобраться в проблеме, чем учёные.
Источник изображения: Jacqueline Orrell/SLAC National Accelerator Laboratory
В своём исследовании учёные использовали усовершенствованный источник света, излучающий в диапазоне от инфракрасного до рентгеновского. Одновременно проводились десятки экспериментов с использованием методов химической визуализации или сканирующей просвечивающей рентгеновской микроскопии (STXM). Литиевая батарея подвергалась циклическим заряду и разряду, а оборудование одновременно следило за физическими и химическими процессами в сотне частиц батареи на 50 различных энергетических уровнях.
Полученные в ходе эксперимента 5 000 изображений «скормили» специально созданному алгоритму машинного обучения. И это был не простой алгоритм, который мог извлекать те или иные данные из картинок. Утверждается, что алгоритм анализировал изображения, исходя из целого ряда предварительно введённых данных и моделей, полученных в других исследованиях по сходной тематике. Фактически, повторим, учёные утверждают о «научном ИИ», который мог «осмысленно» анализировать нужную, а не случайную информацию.
Созданный в лаборатории алгоритм, сочетающий машинное обучение и рентгеновскую микроскопию, обещает сэкономить годы исследований, сравнительно быстро проведя анализ поведения частиц в аккумуляторах под нагрузкой и прояснив фундаментальные процессы, которые при этом происходят в материалах внутри аккумуляторов.
Патрик Херринг (Patrick Herring), старший научный сотрудник исследовательского института Toyota, который поддерживал эту работу в рамках своей программы ускоренного проектирования материалов, сказал: «Понимая фундаментальные реакции, происходящие в батарее, мы можем продлить ее срок службы, обеспечить более быструю зарядку и, в конечном итоге, проектировать батареи из лучших материалов».
Читайте также
- Xiaomi представила маршрутизатор Redmi Router AX5400 с чипом Qualcomm
- Western Digital повысила цены на флеш-память NAND — это следствие загрязнения производства в январе
- 4 вида вооружения, которые отправили в Европу из-за Украины, но никогда не испытывали в деле
- Twitter позволит вешать ярлыки на ботов, чтобы люди могли отличать их от живых пользователей
- Найдена загадочная "невидимая" черная дыра: космическая аномалия
- Новая статья: Обзор игрового 4K-монитора ASUS TUF Gaming VG28UQL1A: лучше поздно, чем никогда